Geometry of String Vacua

Ronen Plesser

Physics Faculty Lunch Talk
Duke University

September 10, 2013
String theory is our best candidate for a quantum theory of gravity. This should interest you because:

- Quantum gravitational effects are crucial in understanding physics near a horizon – not just singularity!
- Important in understanding early Universe cosmology
- Guide to physics beyond standard model
Quantum Gravity Matters

String theory is our best candidate for a quantum theory of gravity. This should interest you because:

- Quantum gravitational effects are crucial in understanding physics near a horizon – not just singularity!
- Important in understanding early Universe cosmology
- Guide to physics beyond standard model
Quantum Gravity Matters

String theory is our best candidate for a quantum theory of gravity. This should interest you because:

- Quantum gravitational effects are crucial in understanding physics near a horizon – not just singularity!
- Important in understanding early Universe cosmology
- Guide to physics beyond standard model
String theory is our best candidate for a quantum theory of gravity. This should interest you because:

- Quantum gravitational effects are crucial in understanding physics near a horizon – not just singularity!
- Important in understanding early Universe cosmology
- Guide to physics beyond standard model
Beyond reasons to understand Planck-scale physics, String Theory as a way of thinking about physics has been a source of new ideas or a useful test-bed for novel approaches:

- Supersymmetry
- Dualities
- Holography
- ...
Beyond reasons to understand Planck-scale physics, String Theory as a way of thinking about physics has been a source of new ideas or a useful test-bed for novel approaches:

- Supersymmetry
- Dualities
- Holography
- ...
Beyond reasons to understand Planck-scale physics, String Theory as a way of thinking about physics has been a source of new ideas or a useful test-bed for novel approaches:

- Supersymmetry
- Dualities
- Holography
- ...
Beyond reasons to understand Planck-scale physics, String Theory as a way of thinking about physics has been a source of new ideas or a useful test-bed for novel approaches:

- Supersymmetry
- Dualities
- Holography
- ...
A string theory is defined perturbatively by the worldsheet supersymmetry. A free theory with full Poincaré invariance in 10d is then

- Type II A/B: type-II A/B supergravity. 32 supercharges; odd/even p-form fields decoupled from string states.

- Heterotic: $\mathcal{N} = 1$ supergravity. 16 supercharges; gauge group $E_8 \times E_8$ or $\text{Spin}(32)/\mathbb{Z}_2$.

These are geometric vacua: interpret as strings propagating in $M^{1,9}$ with trivial background fields. More general geometric vacua are obtained from more general background configurations of the massless bosonic fields.
A string theory is defined perturbatively by the worldsheet supersymmetry. A free theory with full Poincaré invariance in 10d is then

- Type IIA/B: type-IIA/B supergravity. 32 supercharges; odd/even p-form fields decoupled from string states.
- Heterotic: $\mathcal{N} = 1$ supergravity. 16 supercharges; gauge group $E_8 \times E_8$ or $\text{Spin}(32)/\mathbb{Z}_2$.

These are geometric vacua: interpret as strings propagating in $M^{1,9}$ with trivial background fields. More general geometric vacua are obtained from more general background configurations of the massless bosonic fields.
A string theory is defined perturbatively by the worldsheet supersymmetry. A free theory with full Poincaré invariance in 10d is then

- **Type IIA/B**: type-IIA/B supergravity. 32 supercharges; odd/even p-form fields decoupled from string states.
- **Heterotic**: $\mathcal{N} = 1$ supergravity. 16 supercharges; gauge group $E_8 \times E_8$ or $\text{Spin}(32)/\mathbb{Z}_2$.

These are geometric vacua: interpret as strings propagating in $M^{1,9}$ with trivial background fields. More general geometric vacua are obtained from more general background configurations of the massless bosonic fields.
Geometric Vacua of Type-II Strings

\[S = \int \frac{1}{2} \sum (g_{IJ} + iB_{IJ}) \partial X^I \cdot \bar{\partial} X^J \]

\[+ \frac{i}{2} g_{IJ} \left(\lambda^I D_z \lambda^J + \psi^I D_z \psi^J \right) \]

\[+ \frac{1}{4} R_{IJKL} \lambda^I \lambda^J \psi^K \psi^L \]

\[D_z \psi^I = \partial_z \psi^I + \Gamma^I_{JK} \partial \phi^J \psi^K \]

Equations of motion (one-loop)

\[R_{IJ} = 0 \]

\[H_{IJK} = \partial [I B_{JK}] = 0 \]

Flat 10d solution: \(g_{IJ} = \eta_{IJ}; B_{IJ} = 0. \)
Type-II String Compactification

Consider $M^{1,3} \times X$. $I = \{ \mu, i \}$. $g_{\mu\nu} = \eta_{\mu\nu}$; $B_{\mu\nu} = 0$. Find exact vacua with $\mathcal{N} = 2$ supersymmetry in 4d for:

- X complex and g Kähler: Calabi–Yau
 - Moduli space of CY metrics factors as $\mathcal{M}_{cx} \times \mathcal{M}_K$.
 - Perturbative expansion valid at Large-Radius Limit in \mathcal{M}_K. Metric corrected by world-sheet instantons.
- S_{int} is $\mathcal{N} = (2, 2)$ superconformal, $c = \bar{c} = 15$.
- Moduli space factors as $\mathcal{M}_{cc} \times \mathcal{M}_{ac}$.

What is the most general $(2, 2)$ SCFT? Do they all have LRL limit points?
Type-II String Compactification

Consider $M^{1,3} \times X$. $I = \{\mu, i\}$. $g_{\mu\nu} = \eta_{\mu\nu}$; $B_{\mu\nu} = 0$. Find exact vacua with $\mathcal{N} = 2$ supersymmetry in 4d for:

- X complex and g Kähler: Calabi–Yau
- Moduli space of CY metrics factors as $\mathcal{M}_{cx} \times \mathcal{M}_K$.
- Perturbative expansion valid at Large-Radius Limit in \mathcal{M}_K. Metric corrected by world-sheet instantons.

What is the most general (2,2) SCFT? Do they all have LRL limit points?
Consider $M^{1,3} \times X$. $I = \{\mu, i\}$. $g_{\mu\nu} = \eta_{\mu\nu}$; $B_{\mu\nu} = 0$. Find exact vacua with $\mathcal{N} = 2$ supersymmetry in 4d for:

- X complex and g Kähler: Calabi–Yau
- Moduli space of CY metrics factors as $\mathcal{M}_{cx} \times \mathcal{M}_K$.
- Perturbative expansion valid at Large-Radius Limit in \mathcal{M}_K. Metric corrected by world-sheet instantons.

S_{int} is $\mathcal{N} = (2, 2)$ superconformal, $c = \overline{c} = 15$.

- Moduli space factors as $\mathcal{M}_{cc} \times \mathcal{M}_{ac}$.
- What is the most general $(2, 2)$ SCFT? Do they all have LRL limit points?
Type-II String Compactification

Consider $M^{1,3} \times X$. $I = \{\mu, i\}$. $g_{\mu\nu} = \eta_{\mu\nu}$; $B_{\mu\nu} = 0$. Find exact vacua with $\mathcal{N} = 2$ supersymmetry in 4d for:

- X complex and g Kähler: Calabi–Yau
- Moduli space of CY metrics factors as $\mathcal{M}_{cx} \times \mathcal{M}_K$.
- Perturbative expansion valid at Large-Radius Limit in \mathcal{M}_K. Metric corrected by world-sheet instantons.
- S_{int} is $\mathcal{N} = (2, 2)$ superconformal, $c = \bar{c} = 15$.
- Moduli space factors as $\mathcal{M}_{cc} \times \mathcal{M}_{ac}$.

What is the most general $(2, 2)$ SCFT? Do they all have LRL limit points?
Type-II String Compactification

Consider $M^{1,3} \times X$. $I = \{\mu, i\}$. $g_{\mu\nu} = \eta_{\mu\nu}$; $B_{\mu\nu} = 0$. Find exact vacua with $\mathcal{N} = 2$ supersymmetry in 4d for:

- X complex and g Kähler: Calabi–Yau
- Moduli space of CY metrics factors as $\mathcal{M}_{cx} \times \mathcal{M}_K$.
- Perturbative expansion valid at Large-Radius Limit in \mathcal{M}_K. Metric corrected by world-sheet instantons.

- S_{int} is $\mathcal{N} = (2, 2)$ superconformal, $c = \bar{c} = 15$.
- Moduli space factors as $\mathcal{M}_{cc} \times \mathcal{M}_{ac}$.

What is the most general $(2, 2)$ SCFT? Do they all have LRL limit points?
Type-II String Compactification

Consider $M^{1,3} \times X$. $I = \{\mu, i\}$. $g_{\mu\nu} = \eta_{\mu\nu}$; $B_{\mu\nu} = 0$. Find exact vacua with $\mathcal{N} = 2$ supersymmetry in 4d for:

- X complex and g Kähler: Calabi–Yau
- Moduli space of CY metrics factors as $\mathcal{M}_{cx} \times \mathcal{M}_K$.
- Perturbative expansion valid at Large-Radius Limit in \mathcal{M}_K. Metric corrected by world-sheet instantons.

- S_{int} is $\mathcal{N} = (2, 2)$ superconformal, $c = \overline{c} = 15$.
- Moduli space factors as $\mathcal{M}_{cc} \times \mathcal{M}_{ac}$.

What is the most general $(2, 2)$ SCFT? Do they all have LRL limit points?
Type-II String Compactification

Consider $M^{1,3} \times X$. $I = \{\mu, i\}$. $g_{\mu\nu} = \eta_{\mu\nu}$; $B_{\mu\nu} = 0$. Find exact vacua with $\mathcal{N} = 2$ supersymmetry in 4d for:

- X complex and g Kähler: Calabi–Yau
- Moduli space of CY metrics factors as $\mathcal{M}_{\text{cx}} \times \mathcal{M}_K$.
- Perturbative expansion valid at Large-Radius Limit in \mathcal{M}_K. Metric corrected by world-sheet instantons.

What is the most general $(2, 2)$ SCFT? Do they all have LRL limit points?
Gauged Linear Sigma Model

Witten’s **GLSM** is a way of constructing a large class of SCFTs with a global model of moduli space. Gauge theory in 2d is asymptotically free in UV. With suitable choices, find nontrivial IR behavior described by desired SCFT.

- Family of theories determined by (Abelian) gauge group G and charges Q. Nontrivial IR limit if $\sum Q = 0$.
- Family parameterized by G-invariant polynomial W and (complex) FI terms.

\[
Q_a = \begin{pmatrix}
-4 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & -2 & 0
\end{pmatrix}
\]

\[
W = \phi_0 \left(\phi_1^4 + \phi_2^4 + \phi_3^4 + \phi_6^4(\phi_4^8 + \phi_5^8) \right) + (83 \text{ more terms})
\]

\[
q_a = e^{-2\pi r_a + i\theta_a}
\]
Gauged Linear Sigma Model

Witten’s GLSM is a way of constructing a large class of SCFTs with a global model of moduli space. Gauge theory in 2d is asymptotically free in UV. With suitable choices, find nontrivial IR behavior described by desired SCFT.

- Family of theories determined by (Abelian) gauge group G and charges Q. Nontrivial IR limit if $\sum Q = 0$.
- Family parameterized by G-invariant polynomial W and (complex) FI terms.

\[
Q_a^i = \begin{pmatrix} -4 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & -2 & 0 \end{pmatrix}
\]

\[
W = \Phi_0 \left(\Phi_4^4 + \Phi_2^4 + \Phi_3^4 + \Phi_6^4 (\Phi_4^8 + \Phi_5^8) \right) + (83 \text{ more terms})
\]

\[
q_a = e^{-2\pi r_a + i\theta_a}
\]
Gauged Linear Sigma Model

Witten’s GLSM is a way of constructing a large class of SCFTs with a global model of moduli space. Gauge theory in 2d is asymptotically free in UV. With suitable choices, find nontrivial IR behavior described by desired SCFT.

- Family of theories determined by (Abelian) gauge group G and charges Q. Nontrivial IR limit if $\sum Q = 0$.
- Family parameterized by G-invariant polynomial W and (complex) FI terms.

$$Q^i_a = \begin{pmatrix} -4 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & -2 & 0 \end{pmatrix}$$

$$W = \Phi_0 \left(\Phi_4^4 + \Phi_2^4 + \Phi_3^4 + \Phi_6^4(\Phi_4^8 + \Phi_5^8) \right) + (83 \text{ more terms})$$

$$q^a = e^{-2\pi r^a + i\theta_a}$$
Semiclassical analysis valid when G broken at high energy: vacua are inequivalent solutions to

$$\partial_i W = 0 \quad F_a = \sum_i (Q_a^i |\phi_i|^2 - r_a) = 0 \quad (3)$$

Phase I

$r_1 >> 0 \quad r_2 >> 0$

$|\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 + |\phi_6|^2 >> 0$

$|\phi_4|^2 + |\phi_5|^2 >> 0$

$\phi_6 = \partial_6 W = 0$

Smooth Calabi–Yau
Phases

Semiclassical analysis valid when G broken at high energy: vacua are inequivalent solutions to

$$\partial_i W = 0 \quad F_a = \sum_i (Q_i^a |\phi_i|^2 - r_a) = 0 \quad (3)$$

G broken to \mathbb{Z}_4. Unique vacuum at $\phi_a = 0$ with massless excitations governed by Landau-Ginzburg interactions
Phases

Semiclassical analysis valid when G broken at high energy: vacua are inequivalent solutions to

$$\partial_i W = 0 \quad F_a = \sum_i (Q^i_a |\phi_i|^2 - r_a) = 0 \quad (3)$$

Phase IV

$r_1 \ll 0 \quad r_2 \gg 0$

$|\phi_6|^2 \gg 0$

$|\phi_4|^2 + |\phi_5|^2 \gg 0$

G broken to \mathbb{Z}_4. Inequivalent vacua points on \mathbb{P}^1 with massless fields interacting via LG superpotential fibered over this
Lessons from Type-II Moduli Space

We have learned (and are still learning) a lot from and about these vacua. Some examples:

- **Mirror Symmetry**: A duality relating distinct CY spaces such that type-IIA theory on X is equivalent to type-IIB theory on Y; in particular $\mathcal{M}_{cx}(X) = \mathcal{M}_K(Y)$.

- A consequence of this is the conjecture (SYZ, 1997) that X and Y admit fibrations by T^3. Structure of this is mostly unknown. Conjectures (M, 2010; MP, 2013) exist for families related to GLSMs.

- Singular points in moduli space correspond to singular X. Distinct X connected via “extremal transitions” associated to massless charged matter (GMS, 1995), nonabelian gauge symmetry (KMP, 1997), interacting superconformal field theories (??).

- Recently, exact calculations of GLSM partition function on $\Sigma = S^2$. Mirror symmetry of this (GL, 2012; HR, 2013; BPR, 2013?)
Lessons from Type-II Moduli Space

We have learned (and are still learning) a lot from and about these vacua. Some examples:

- **Mirror Symmetry**: A duality relating distinct CY spaces such that type-IIA theory on X is equivalent to type-IIB theory on Y; in particular $\mathcal{M}_{cx}(X) = \mathcal{M}_K(Y)$.
- A consequence of this is the conjecture (SYZ, 1997) that X and Y admit fibrations by T^3. Structure of this is mostly unknown. Conjectures (M, 2010; MP, 2013) exist for families related to GLSMs.
- Singular points in moduli space correspond to singular X. Distinct X connected via “extremal transitions” associated to massless charged matter (GMS, 1995), nonabelian gauge symmetry (KMP, 1997), interacting superconformal field theories (??).
- Recently, exact calculations of GLSM partition function on $\Sigma = S^2$. Mirror symmetry of this (GL, 2012; HR, 2013; BPR, 2013??)
Lessons from Type-II Moduli Space

We have learned (and are still learning) a lot from and about these vacua. Some examples:

- **Mirror Symmetry**: A duality relating distinct CY spaces such that type-IIB theory on X is equivalent to type-IIB theory on Y; in particular $\mathcal{M}_{cx}(X) = \mathcal{M}_{K}(Y)$.

- A consequence of this is the conjecture (SYZ, 1997) that X and Y admit fibrations by T^3. Structure of this is mostly unknown. Conjectures (M, 2010; MP, 2013) exist for families related to GLSMs.

- Singular points in moduli space correspond to singular X. Distinct X connected via “extremal transitions” associated to massless charged matter (GMS, 1995), nonabelian gauge symmetry (KMP, 1997), interacting superconformal field theories (??).

- Recently, exact calculations of GLSM partition function on $\Sigma = S^2$. Mirror symmetry of this (GL, 2012 ;HR, 2013; BPR, 2013??)
Lessons from Type-II Moduli Space

We have learned (and are still learning) a lot from and about these vacua. Some examples:

- **Mirror Symmetry**: A duality relating distinct CY spaces such that type-IIA theory on X is equivalent to type-IIB theory on Y; in particular $\mathcal{M}_{cx}(X) = \mathcal{M}_K(Y)$.

 A consequence of this is the conjecture ([SYZ, 1997]) that X and Y admit fibrations by T^3. Structure of this is mostly unknown. Conjectures ([M, 2010; MP, 2013]) exist for families related to GLSMs.

- Singular points in moduli space correspond to singular X. Distinct X connected via “extremal transitions” associated to massless charged matter ([GMS, 1995]), nonabelian gauge symmetry ([KMP, 1997]), interacting superconformal field theories (??).

- Recently, exact calculations of GLSM partition function on $\Sigma = S^2$. Mirror symmetry of this ([GL, 2012; HR, 2013; BPR, 2013?])
Geometric Vacua of Heterotic Strings

\[S = \int_\Sigma \frac{1}{2} (g_{IJ} + iB_{IJ}) \partial X^I \cdot \bar{\partial} X^J \]

\[+ \frac{i}{2} \left(h_a \lambda^a D\bar{z} \lambda^d + g_{IJ} \psi^I D\bar{z} \psi^J \right) \]

\[+ \frac{1}{4} F_{IJab} \lambda^a \lambda^b \psi^I \psi^J \]

(4)

\[D\bar{z} \lambda^a = \bar{\partial} \lambda^a + A_{Jb}^a \bar{\partial} \phi^J \lambda^b \]

(5)
Heterotic String Compactification

Consider $M^{1,3} \times X$. $I = \{\mu, i\}$. $g_{\mu\nu} = \eta_{\mu\nu}$; $B_{\mu\nu} = 0$. Find vacua with $\mathcal{N} = 1$ supersymmetry in 4d for:

- X complex; E holomorphic with $c_2(E) = c_2(TX)$; g Kähler: Calabi–Yau space with (polystable) bundle.
- Special solution: $E = TM$.
- Moduli space at LRL parameterized by deformations of complex structure, Kähler class, bundle.
- Expect generic semiclassical solutions to be destabilized by world-sheet instantons.
- S_{int} is $\mathcal{N} = (0, 2)$ superconformal, $c = 26$, $\overline{c} = 15$.
- In some cases a subspace has $(2, 2)$ supersymmetry.
- Moduli space is generated by (some of) the chiral operators.
- Moduli space branched.
Heterotic String Compactification

Consider $M^{1,3} \times X$. $I = \{\mu, i\}$. $g_{\mu\nu} = \eta_{\mu\nu}$; $B_{\mu\nu} = 0$. Find vacua with $\mathcal{N} = 1$ supersymmetry in 4d for:

- **X complex; E holomorphic** with $c_2(E) = c_2(TX)$; g

 Kähler: Calabi–Yau space with (polystable) bundle.

- Special solution: $E = TM$.

- Moduli space at LRL parameterized by deformations of complex structure, Kähler class, bundle.

- Expect generic semiclassical solutions to be destabilized by world-sheet instantons.

- **S_{int} is $\mathcal{N} = (0, 2)$ superconformal,** $c = 26$, $\overline{c} = 15$.

- In some cases a subspace has (2, 2) supersymmetry.

- Moduli space is generated by (some of) the chiral operators.

- Moduli space branched.
Heterotic String Compactification

Consider $M^{1,3} \times X$. $I = \{\mu, i\}$. $g_{\mu \nu} = \eta_{\mu \nu}$; $B_{\mu \nu} = 0$. Find vacua with $\mathcal{N} = 1$ supersymmetry in 4d for:

- X complex; E holomorphic with $c_2(E) = c_2(TX)$; g Kähler: Calabi–Yau space with (polystable) bundle.
- Special solution: $E = TM$.
- Moduli space at LRL parameterized by deformations of complex structure, Kähler class, bundle.
- Expect generic semiclassical solutions to be destabilized by world-sheet instantons.
- S_{int} is $\mathcal{N} = (0, 2)$ superconformal, $c = 26$, $\overline{c} = 15$.
- In some cases a subspace has $(2, 2)$ supersymmetry.
- Moduli space is generated by (some of) the chiral operators.
- Moduli space branched.
Heterotic String Compactification

Consider $M^{1,3} \times X$. $I = \{\mu, i\}$. $g_{\mu\nu} = \eta_{\mu\nu}$; $B_{\mu\nu} = 0$. Find vacua with $\mathcal{N} = 1$ supersymmetry in 4d for:

- X complex; E holomorphic with $c_2(E) = c_2(TX)$; g Kähler: Calabi–Yau space with (polystable) bundle.
- Special solution: $E = TM$.
- Moduli space at LRL parameterized by deformations of complex structure, Kähler class, bundle.
- Expect generic semiclassical solutions to be destabilized by world-sheet instantons.
- S_{int} is $\mathcal{N} = (0, 2)$ superconformal, $c = 26$, $\overline{c} = 15$.
- In some cases a subspace has $(2, 2)$ supersymmetry.
- Moduli space is generated by (some of) the chiral operators.
- Moduli space branched.
Heterotic String Compactification

Consider $M^{1,3} \times X$. $I = \{\mu, i\}$. $g_{\mu \nu} = \eta_{\mu \nu}; B_{\mu \nu} = 0$. Find vacua with $\mathcal{N} = 1$ supersymmetry in 4d for:

- X complex; E holomorphic with $c_2(E) = c_2(TX)$; g Kähler: Calabi–Yau space with (polystable) bundle.
- Special solution: $E = TM$.
- Moduli space at LRL parameterized by deformations of complex structure, Kähler class, bundle.
- Expect generic semiclassical solutions to be destabilized by world-sheet instantons.
- S_{int} is $\mathcal{N} = (0, 2)$ superconformal, $c = 26$, $\bar{c} = 15$.
- In some cases a subspace has $(2, 2)$ supersymmetry.
- Moduli space is generated by (some of) the chiral operators.
- Moduli space branched.
Heterotic String Compactification

Consider $M^{1,3} \times X$. $I = \{\mu, i\}$. $g_{\mu\nu} = \eta_{\mu\nu}$; $B_{\mu\nu} = 0$. Find vacua with $\mathcal{N} = 1$ supersymmetry in 4d for:

- X complex; E holomorphic with $c_2(E) = c_2(TX)$; g Kähler: Calabi–Yau space with (polystable) bundle.
- Special solution: $E = TM$.
- Moduli space at LRL parameterized by deformations of complex structure, Kähler class, bundle.
- Expect generic semiclassical solutions to be destabilized by world-sheet instantons.
- S_{int} is $\mathcal{N} = (0, 2)$ superconformal, $c = 26$, $\overline{c} = 15$.
- In some cases a subspace has $(2, 2)$ supersymmetry.
- Moduli space is generated by (some of) the chiral operators.
- Moduli space branched.
Heterotic String Compactification

Consider $M^{1,3} \times X$. $I = \{\mu, i\}$. $g_{\mu\nu} = \eta_{\mu\nu}$; $B_{\mu\nu} = 0$. Find vacua with $\mathcal{N} = 1$ supersymmetry in 4d for:

- **X complex**; E holomorphic with $c_2(E) = c_2(TX)$; g Kähler: Calabi–Yau space with (polystable) bundle.
- Special solution: $E = TM$.
- **Moduli space** at LRL parameterized by deformations of complex structure, Kähler class, bundle.
- Expect generic semiclassical solutions to be destabilized by world-sheet instantons.
- S_{int} is $\mathcal{N} = (0, 2)$ superconformal, $c = 26$, $\overline{c} = 15$.
- In some cases a subspace has $(2, 2)$ supersymmetry.
- Moduli space is generated by (some of) the chiral operators.
- Moduli space branched.
Heterotic String Compactification

Consider $M^{1,3} \times X$. $I = \{\mu, i\}$. $g_{\mu \nu} = \eta_{\mu \nu}$; $B_{\mu \nu} = 0$. Find vacua with $\mathcal{N} = 1$ supersymmetry in 4d for:

- X complex; E holomorphic with $c_2(E) = c_2(TX)$; g Kähler: Calabi–Yau space with (polystable) bundle.
- Special solution: $E = TM$.
- **Moduli space** at LRL parameterized by deformations of complex structure, Kähler class, bundle.
- Expect generic semiclassical solutions to be destabilized by world-sheet instantons.

- S_{int} is $\mathcal{N} = (0, 2)$ superconformal, $c = 26$, $\overline{c} = 15$.
- In some cases a subspace has $(2, 2)$ supersymmetry.
- Moduli space is generated by (some of) the chiral operators.
- Moduli space branched.
Motivation Type-II Vacua Heterotic Vacua

Heterotic String Compactification

Consider $M^{1,3} \times X$. $I = \{\mu, i\}$. $g_{\mu\nu} = \eta_{\mu\nu}$; $B_{\mu\nu} = 0$. Find vacua with $\mathcal{N} = 1$ supersymmetry in 4d for:

- X complex; E holomorphic with $c_2(E) = c_2(TX)$; g Kähler: Calabi–Yau space with (polystable) bundle.
- Special solution: $E = TM$.
- Moduli space at LRL parameterized by deformations of complex structure, Kähler class, bundle.
- Expect generic semiclassical solutions to be destabilized by world-sheet instantons.

- S_{int} is $\mathcal{N} = (0, 2)$ superconformal, $c = 26$, $\overline{c} = 15$.
- In some cases a subspace has $(2, 2)$ supersymmetry.
- Moduli space is generated by (some of) the chiral operators.
- Moduli space branched.
Heterotic String Vacua

In general, not much known. Can learn by restricting attention to models with a $(2, 2)$ locus - $(0, 2)$ deformations of $(2, 2)$ models. In particular, find:

- An extension of mirror symmetry (MP, 2010)
- Comparison of dimension of space of first-order deformations between different phases (AMP, 2011)
- An example in which instantons lift some of these (AP, 2011)
- Calculation of exact spectrum of massless states in hybrid limit (BMP, 2013).
Heterotic String Vacua

In general, not much known. Can learn by restricting attention to models with a $(2, 2)$ locus - $(0, 2)$ deformations of $(2, 2)$ models. In particular, find:

- An extension of mirror symmetry (*MP, 2010*)
- Comparison of dimension of space of first-order deformations between different phases (*AMP, 2011*)
- An example in which instantons lift some of these (*AP, 2011*)
- Calculation of exact spectrum of massless states in hybrid limit (*BMP, 2013*).