1. We are to compute the Dirichlet Green’s function for a volume V consisting (in cylindrical coordinates) of the points (r, ϕ, z) with $r < a$ and $0 < z < L$. The Green’s function will be a function of x satisfying

$$\nabla^2 G_D(x, x') = -4\pi \delta^{(3)}(x - x')$$

$$= -\frac{4\pi}{r} \delta(r - r') \delta(z - z') \delta(\phi - \phi')$$

$$G_D(x, x') = 0 \quad r = a$$

$$G_D(x, x') = 0 \quad z = 0, L.$$

The solution to the problem will be given by kqG_N. Note that to respect the problem’s notation I have slightly modified the way boundary conditions are imposed on G relative to our class conventions. Since G_D is symmetric in its arguments, this is unimportant anyway.

To get a first form for G_D write the δ functions for ϕ and r as

$$\delta(\phi - \phi') = \frac{1}{2\pi} \sum_{m=\pm\infty} e^{im(\phi - \phi')}$$

$$\frac{1}{r} \delta(r - r') = \sum_{n=1}^{\infty} \frac{2}{a^2 J_{\nu+1}^2(x_{\nu n})} J_\nu(x_{\nu n} r/a) J_\nu(x_{\nu n} r'/a).$$

The latter equation holds for any $\nu \geq -1$. It is obtained from eqns. (4.13) and (4.14) in the notes by setting $f(r) = \delta(r - r')$.

Similarly expanding G_D (recall this is a complete set of functions satisfying the boundary conditions in r)

$$G_D(x, x') = \sum_{m=\pm\infty} e^{im(\phi - \phi')} \sum_{n=1}^{\infty} J_m(x_{mn} r/a) f_{mn}(r'; z, z'),$$

and inserting into the Poisson equation, we find that

$$f_{mn}(r'; z, z') = \frac{2}{a^2 J_{\nu+1}^2(x_{\nu n})} J_m(x_{mn} r'/a) g_{mn}(z, z').$$
where the vertical function $g_{mn}(z, z')$ satisfies
\[
\left[\frac{\partial^2}{\partial z^2} - \left(\frac{x_{mn}}{a}\right)^2 \right] g_{mn}(z, z') = -2\delta(z - z') .
\]

For $z \neq z'$ this is easily solved by
\[
g_{mn}(z, z') = A_{mn}(z') \sinh \left(\frac{x_{mn}}{a} z \right) + B_{mn}(z') \cosh \left(\frac{x_{mn}}{a} z \right) .
\]

Imposing the boundary conditions at $z = 0, L$ we have
\[
g_{mn}(z, z') = \begin{cases}
A_{mn}(z') \sinh \left(\frac{x_{mn}}{a} z \right) & z < z' \\
A_{mn}'(z') \sinh \left(\frac{x_{mn}}{a} (L - z) \right) & z > z'
\end{cases} .
\]

The vertical function must be continuous at $z = z'$. Imposing this we see that
\[
g_{mn}(z, z') = A_{mn} \sinh \left(\frac{x_{mn}}{a} z < \right) \sinh \left(\frac{x_{mn}}{a} (L - z > \right) ,
\]

where, as usual,
\[
z_> = \left\{ \min_{\max} (z, z') \right\} .
\]

Inserting this back into the equation and integrating through $z = z'$ we find that we must have
\[
-A_{mn} \frac{x_{mn}}{a} \sinh \left(\frac{x_{mn}}{a} L \right) = -2 .
\]

Putting all of this together we have our first form
\[
G_D(x, x') = \frac{4}{a} \sum_{m=-\infty}^{\infty} e^{im(\phi - \phi')} \sum_{n=1}^{\infty} J_m(x_{mn} r'/a) J_m(x_{mn} r/a) \frac{1}{\nu+1} (x_{\nu n} \sinh (\frac{x_{mn} L}{a})) \times \sinh \left(\frac{x_{mn}}{a} z < \right) \sinh \left(\frac{x_{mn}}{a} (L - z > \right) .
\]

To get a second form, we exchange the roles of z and r in the above. Thus we expand the δ function in ϕ but also in z using
\[
\delta(z - z') = \frac{2}{L} \sum_{n=1}^{\infty} \sin(n \pi z/L) \sin(n \pi z'/L) .
\]
We write G_D in a complete set of functions satisfying the boundary conditions in z as

$$G_D(x, x') = \sum_{m=-\infty}^{\infty} e^{im(\phi - \phi')} \sum_{n=1}^{\infty} \sin(n\pi z/L) f_{mn}(z'; r, r') .$$

Inserting into the Poisson equation we find

$$f_{mn}(z'; r, r') = \frac{2}{L} \sin(n\pi z'/L) g_{mn}(r, r') ,$$

where the radial function $g_{mn}(z, z')$ satisfies

$$\left[\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} - \left(\frac{n\pi}{L} \right)^2 + \frac{m^2}{r^2} \right] g_{mn}(r, r') = -\frac{2}{r} \delta(r - r') .$$

For $r \neq r'$ this is solved by

$$g_{mn}(r, r') = A_{mn}(r') I_m\left(n\pi r/L\right) + B_{mn}(r') K_m\left(n\pi r/L\right) .$$

In order for the solution to be regular at the origin, and to vanish at $r = a$, we have

$$g_{mn}(r, r') = \begin{cases} A_{mn}(r') I_m\left(n\pi r/L\right) & r < r' \\ A_{mn}'(r') \left(I_m\left(n\pi a/L\right) K_m\left(n\pi r'/L\right) - K_m\left(n\pi a/L\right) I_m\left(n\pi r'/L\right)\right) & r > r' \end{cases} .$$

We want the radial function to be continuous at $r = r'$, hence

$$g_{mn}(r, r') = A_{mn} I_m\left(n\pi r/L\right) \left[I_m\left(n\pi a/L\right) K_m\left(n\pi r'/L\right) - K_m\left(n\pi a/L\right) I_m\left(n\pi r'/L\right)\right] ,$$

where, as always,

$$r_\geq = \left\{ \min \left(r, r' \right) \right\} ,$$

$$r_\leq = \left\{ \max \left(r, r' \right) \right\} .$$

Finally, integrating the radial equation through the singularity at $r = r$ we find

$$A_{mn} \frac{n\pi}{L} I(n\pi a/L) \left[I_m\left(n\pi r'/L\right) K'_m\left(n\pi r'/L\right) - I'_m\left(n\pi r'/L\right) K_m\left(n\pi r'/L\right)\right]$$

$$= -A_{mn} \frac{1}{r'} I(n\pi a/L) = -\frac{2}{r'} ,$$

where I have used Jackson’s equation (3.147) computing the Wronskian. Putting it all together, we have a second form

$$G_D(x, x') = \frac{4}{L} \sum_{m=-\infty}^{\infty} e^{im(\phi - \phi')} \sum_{n=1}^{\infty} \sin(n\pi z/L) \sin(n\pi z'/L) \frac{I_m\left(n\pi r_\leq/L\right)}{I_m\left(n\pi a/L\right)}$$

$$\times \left[I_m\left(n\pi a/L\right) K_m\left(n\pi r_\geq/L\right) - K_m\left(n\pi a/L\right) I_m\left(n\pi r_\geq/L\right)\right] .$$
The last form follows by expanding G_D in eigenfunctions of the Laplacian with the Dirichlet boundary conditions. The uniqueness theorem guarantees that there is no zero eigenvalue, and our basis of eigenfunctions may be taken to be

$$\psi_{mkn}(r, \phi, z) = e^{im\phi} \sin(k\pi z/L)J_m(x_{mn}r/a),$$

with eigenvalue

$$\nabla^2 \psi_{mkn} = \left[\left(\frac{x_{mn}}{a} \right)^2 + \left(\frac{n\pi}{L} \right)^2 \right] \psi_{mkn},$$

and normalized to

$$\int_0^{2\pi} d\phi \int_0^L dz \int_0^a dr \psi^*_{m'k'n'}(r, \phi, z) \psi_{mkn}(r, \phi, z) = \frac{a^2 L \pi J_{m+1}^2(x_{mn})}{2} \delta_{mm'} \delta_{kk'} \delta_{nn'}.$$

Now we simply plug these into eqn. (2.36) from the second week’s notes to find our third form

$$G_D(x, x') = \frac{8}{La^2} \sum_{m=-\infty}^{\infty} \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} e^{im(\phi-\phi')} \frac{\sin(k\pi z/L) \sin(k\pi z'/L) J_m(x_{mn}r/a) J_m(x_{mn}r'/a)}{\left(\frac{x_{mn}}{a} \right)^2 + \left(\frac{k\pi}{L} \right)^2} J_{m+1}^2(x_{mn}).$$

The relation between the different approaches was discussed in class. In the third form, the inhomogeneous equation is solved using the eigenfunction expansion. This means essentially that we expand the δ functions in all three variables. The cost is an extra sum. The advantage is that there is no need to treat one variable as an exception and deal with piecewise-defined functions.

2. Now, to use this for the problem at hand we need to plug the various forms computed above into our equation (1.58). Since $\rho = 0$ we have no volume integral. In the surface integral, the only contribution is from the disc $r \leq b < a$ at $z = L$. On this boundary, the normal to the surface is \hat{z} so (1.58) takes the form

$$\Phi(x) = -\frac{V}{4\pi} \int_0^{2\pi} d\phi' \int_0^b r'dr' \frac{\partial G_D(x; r', \phi', L)}{\partial z'}.$$

The angular integration will yield the same result in all cases, restricting the sum over m to $m = 0$. The azimuthal symmetry simplifies things as usual.
(a) Getting the expansions is now a matter of plugging and performing the radial integral. It will be useful to note that

\[A_n = \int_0^b r' dr' J_0(x_0 r'/a) = \frac{ab}{x_0} J_1(x_0 b/a) . \]

We find from the first form

\[\Phi(r, \phi, z) = \frac{2V}{a^2} \sum_{n=1}^{\infty} A_n J_0(x_0 r/a) \sinh(x_0 z/a) J_2^2(x_0) \sinh(x_0 L/a) . \]

For the second form we will need to work a little bit harder. We will need

\[B_n(r) = \int_0^r r' dr' I_0(n \pi r'/L) = \frac{L r}{n \pi} I_1(n \pi r/L) \]

\[C_n(r) = \int_r^b r' dr' K_0(n \pi r'/L) = \frac{L}{n \pi} [r K_1(n \pi r/L) - b K_1(n \pi b/L)] , \]

for \(0 < r \leq b\), and distinguish the case \(r > b\) where we have

\[\Phi(r, \phi, z) = \frac{2 \pi V}{L^2} \sum_{n=1}^{\infty} \left(-1 \right)^n n \sin(n \pi z/L) B_n(b) \]

\[\times \left[I_m(n \pi a/L) K_m(n \pi r/L) - K_m(n \pi a/L) I_m(n \pi r/L) \right] . \]

For \(r < b\) we have instead

\[\Phi(r, \phi, z) = -\frac{2 \pi V}{L^2} \sum_{n=1}^{\infty} \left(-1 \right)^n n \sin(n \pi z/L) \]

\[\times \left[B_n(r) [I_0(n \pi a/L) K_0(n \pi r/L) - K_0(n \pi a/L) I_0(n \pi r/L)] \right. \]

\[+ \left. I_0(n \pi r/L) [I_0(n \pi a/L) C_n(r) - K_0(n \pi a/L) (B_n(b) - B_n(r))] \right] . \]

For the third form we find

\[\Phi(r, \phi, z) = -\frac{2V}{L^2 a^2} \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \left[\frac{(-1)^k \sin(k \pi z/L) J_0(x_0 r/a) A_n}{(x_0 a)^2 + \left(\frac{k \pi \alpha}{L} \right)^2} \right] J_1^2(x_0) . \]

(b) We substitute \(z = a = 2b = L/2\) and \(r = 0\) above, and compute numerically. The first form becomes

\[\Phi(0, \phi, L/2) = V \sum_{n=1}^{\infty} \frac{J_1(x_0 n/2) \sinh(x_0 n)}{x_0 n J_1^2(x_0 n) \sinh(2x_0 n)} . \]
The second form becomes

\[\Phi(0, \phi, L/2) = \frac{V}{2} \sum_{n=1}^{\infty} \frac{(-1)^n \sin(n\pi/2)}{I_0(n\pi/2)} \times [I_0(n\pi/2)K_1(n\pi/4) + K_0(n\pi/2)I_1(n\pi/4)] \] .

The third form becomes

\[\Phi(0, \phi, L/2) = 2\pi V \sum_{l=0}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^l(2l+1)J_1(x_0n/2)}{4x_0^2 + (2l+1)^2\pi^2} x_0 J_1^2(x_0n) . \]

3. We have a localized charge density \(\rho(x) \) in an external field described by the potential \(\Phi^{(0)}(x) \), which is slowly varying in the region where \(\rho \) is nonzero.

(a) The total force on the charge distribution is given by

\[\mathbf{F} = -\int d^3x \rho(x) \nabla \Phi^{(0)}(x) . \]

Using the slow variation of the potential, we expand

\[\Phi^{(0)}(x) = \Phi^{(0)}(0) + \mathbf{x} \cdot \nabla \Phi^{(0)}(0) + \frac{1}{2} \sum_{ij} x_i x_j \frac{\partial^2 \Phi^{(0)}}{\partial x_i \partial x_j} + \frac{1}{6} \sum_{ijk} x_i x_j x_k \frac{\partial^3 \Phi^{(0)}}{\partial x_i \partial x_j \partial x_k} + \cdots , \]

and then take the derivative to find

\[-\nabla \Phi^{(0)}(x) = \mathbf{E}^{(0)}(0) + [(\mathbf{x} \cdot \nabla)\mathbf{E}] (0) + \left[\frac{1}{2} \sum_{jk} x_j x_k \frac{\partial^2 \mathbf{E}^{(0)}}{\partial x_j \partial x_k} \mathbf{E}^{(0)} \right] (0) + \cdots . \]

Inserting this we find

\[\mathbf{F} = \mathbf{E}^{(0)}(0) \int d^3x \rho(x) + \left(\int d^3x \rho(x) \mathbf{x} \right) \cdot \nabla \mathbf{E}^{(0)}(0) + \frac{1}{2} \sum_{jk} \frac{\partial^2 \mathbf{E}^{(0)}}{\partial x_j \partial x_k} (0) \int d^3x \rho(x) x_j x_k + \cdots . \]

In the second term, we use the fact that \(\nabla \times \mathbf{E} = 0 \) which means that

\[\frac{\partial E_i}{\partial x_j} = \frac{\partial E_j}{\partial x_i} \]

which lets us write the second term as

\[(\mathbf{p} \cdot \nabla)\mathbf{E}(0) = \nabla (\mathbf{p} \cdot \mathbf{E})(0) . \]
In the third term, we use the same trick to write
\[
\frac{\partial^2 E_i}{\partial x_j \partial x_k} = \frac{\partial^2 E_j}{\partial x_i \partial x_k},
\]
to find
\[
\frac{1}{6} \sum_{jk} \int d^3x x_j x_k \rho \nabla \frac{\partial E_j^{(0)}}{\partial x_k} = \frac{1}{6} \sum_{jk} \int d^3x (3x_j x_k - r^2 \delta_{jk}) \rho \nabla \frac{\partial E_j^{(0)}}{\partial x_k},
\]
where the last term uses the fact that for the external field, generated by charges outside our volume,
\[
\sum_{jk} \delta_{jk} \frac{\partial E_j^{(0)}}{\partial x_k} = \nabla \cdot \mathbf{E}^{(0)} = 0.
\]

Putting it back together, we have as desired
\[
\mathbf{F} = q\mathbf{E}^{(0)}(0) + \nabla (\mathbf{p} \cdot \mathbf{E})(0) + \frac{1}{6} \sum_{jk} \nabla \left[Q_{jk} \frac{\partial E_j^{(0)}}{\partial x_k} \right] (0).
\]

Comparing this to the expansion of the energy of a charge distribution in an external field, it does seem as though we have “taken a derivative.” As Jackson points out, the energy expansion eqn. (3.16) in our notes ((4.24) in Jackson) is a functional of \(\rho\) and \(\mathbf{E}^{(0)}\) and not really a function of any space coordinate. To obtain our expression for the force from (3.16) one varies the distribution \(\rho\) by translating it bodily
\[
\rho \to \rho' \quad \rho'(\mathbf{x}) = \rho(\mathbf{x} - \delta \mathbf{x}).
\]

The total force is found as an expansion by varying each term in the expression for the energy, resulting in the expression above.

(b)
\[
N_i = \sum_{jk} \epsilon_{ijk} \int d^3x \rho(\mathbf{x}) x_j E_k(\mathbf{x}).
\]

We insert the expansion of \(\mathbf{E}\) and find
\[
N_i = \sum_{jk} \epsilon_{ijk} E_k(0) \int d^3x x_j \rho(\mathbf{x}) + \sum_{jkl} \epsilon_{ijk} \frac{\partial E_k}{\partial x_l}(0) \int d^3x x_j x_k \rho(\mathbf{x}) + \cdots.
\]
The first term has the desired form already. In the second term we need to use the symmetry of \(\frac{\partial E_k}{\partial x_i} \) and then the vanishing of \(\nabla \cdot E \):

\[
\sum_{jkl} \epsilon_{ijk} \frac{\partial E_k}{\partial x_l}(0) \int d^3 x x_l x_j \rho(x) = \frac{1}{3} \sum_{jkl} \epsilon_{ijk} \frac{\partial E_l}{\partial x_k}(0) \int d^3 x (3x_l x_j - r^2 \delta_{jl}) = \frac{1}{3} \sum_{jkl} \epsilon_{ijk} Q_{lj} \frac{\partial E_l}{\partial x_k}(0) .
\]

Thus

\[
N_i = \sum_{jk} \epsilon_{ijk} p_j E_k(0) + \frac{1}{3} \sum_{jkl} \epsilon_{ijk} Q_{lj} \frac{\partial E_l}{\partial x_k}(0) + \cdots .
\]

4.

(a) We write an expansion of the potential inside as well as outside the sphere, imposing the obvious conditions that the potential is well-behaved at the origin and decays at infinity, and that it has the proper singularity at the position of the charge, which we take to be at \(x = d \hat{z} \) to make the azimuthal symmetry manifest. Then we can expand the potential in Legendre polynomials as

\[
\Phi_{r>a} = \frac{q}{4\pi \epsilon_0} \sum_{l \geq 0} \left[\frac{r^l}{r^{l+1}} + A_l r^{-l-1} \right] P_l(\cos \theta)
\]

\[
\Phi_{r<a} = \frac{q}{4\pi \epsilon} \sum_{l \geq 0} B_l r^l P_l(\cos \theta) ,
\]

where \(r_{\min} = \{ \min \max (a, d) \} \). The normalization of \(A_l, B_l \) is chosen for convenience. Now we use our matching conditions at \(r = a \)

\[
\frac{\partial \Phi_{r<a}}{\partial \theta} |_{r=a} = \frac{\partial \Phi_{r>a}}{\partial \theta} |_{r=a}
\]

\[
\epsilon \frac{\partial \Phi_{r<a}}{\partial r} |_{r=a} = \epsilon_0 \frac{\partial \Phi_{r>a}}{\partial r} |_{r=a} .
\]

and the orthogonality of \(P_l \) and of their derivatives to get relations on the coefficients

\[
\frac{\epsilon}{\epsilon_0} \left(\frac{a^l}{a^{l+1}} + A_l a^{-l-1} \right) = B_l a^l
\]

\[
\left(l \frac{a^{l-1}}{a^{l+1}} - (l + 1) A_l a^{-l-2} \right) = l B_l a^{l-1}
\]
Solving these, we have in terms of $\kappa = \epsilon / \epsilon_0$

$$A_l = \frac{l(l - 1)}{l + 1 - l\kappa} \frac{a^{2l+1}}{d^{l+1}}$$

$$B_l = \frac{\kappa}{d^{l+1}(l + 1 - l\kappa)} .$$

(b) At small r, the leading behavior of the potential is

$$\Phi(r) = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{d} + \frac{r \cos \theta}{d^2(2 - \kappa)} + \frac{r^2(3\cos^2 \theta - 1)}{2d^3(3 - 2\kappa)} + O(r^3) \right) .$$

Thus to leading order

$$\mathbf{E} = -\nabla \Phi = k q \left[-\frac{\hat{z}}{d^2(2 - \kappa)} - \frac{2z\hat{z} - x\hat{x} - y\hat{y}}{d^3(3 - 2\kappa)} + O(r^2) \right] .$$

(c) In the limit $\kappa \to \infty$ we see that $\mathbf{E} \to 0$ as expected.

5.

(a) This problem is simpler than it looks. An Ansatz

$$\mathbf{E} = C \frac{\mathbf{x}}{|\mathbf{x}|^3}$$

for some constant C solves the problem. The continuity of \mathbf{E}_\parallel is clear, while the continuity of D_\perp follows simply from $D_\perp = 0$ on both sides of the interface. The constant C is determined by Gauss’s law

$$\int_S \mathbf{D} \cdot d\mathbf{a} = Q .$$

In our case, \mathbf{D} is everywhere normal to the surface of a sphere at radius $a < r < b$, but its magnitude differs over the two hemispheres. Thus

$$\int_S \mathbf{D} \cdot d\mathbf{a} = 2\pi(\epsilon_0 + \epsilon)C = Q$$

determines C and we have

$$\mathbf{E} = \frac{Q}{2\pi(\epsilon + \epsilon_0)} \frac{\mathbf{x}}{|\mathbf{x}|^3} .$$
(b) Inside the conductor $\mathbf{D} = \mathbf{E} = 0$. Thus the normal component of \mathbf{D} at $r = a$ is

$$\mathbf{D}_\perp = 4\pi \sigma .$$

Once more we compute this separately in each hemisphere and find

$$\sigma = \frac{Q}{2\pi a^2} \left\{ \begin{array}{ll}
\frac{1}{\kappa+1} & \text{empty} \\
\frac{\kappa}{\kappa+1} & \text{dielectric}
\end{array} \right\} ,$$

where again $\kappa = \epsilon/\epsilon_0$.

(c) The polarization in the dielectric is given by

$$\mathbf{P} = \mathbf{D} - \epsilon_0 \mathbf{E} = (\epsilon - \epsilon_0) \mathbf{E} .$$

The surface polarization-charge density on the surface of the dielectric at $r = a$ is simply $-P_r$. Thus

$$\sigma_{\text{pol}} = (\epsilon_0 - \epsilon) E_r = -\frac{Q}{2\pi a^2} \frac{\kappa - 1}{\kappa + 1} .$$